Amoozemeter Studies in Kansas Soils Philip Schoeneberger, NSSC, Lincoln NRCS # **Objectives** Overview of K_{sat} field studies in KS: Background Scope Methodology Results # **Background** 1) Saturated vs. Unsaturated Flow. 2) Vertical vs. Multi-directional Flow. # **Saturated Flow in Soils** Water moves at different rates depending upon moisture content. Darcy's Law: $$Q = -kAI$$ outflow = (hydr. cond.) x (Area) x (gradient) - Maximum flow (saturated conditions) Darcy's Law: $$Q = K_{sat} A I$$ $K_{sat} = A I / Q$ # **History** K_{sat} is satisfactory for engineering, hydrology (septic loading rates, etc.) and a convenient single condition to use as an index (to compare soils). K_{unsat} is more desirable for irrigation, etc. # Historical Approach to Water Movement in Soils (in SSD) Vertical movement of water through soil. Consistent with the dominant view of soils (point-centric). - Knew about deep percolation, baseflow (imply lateral flow) but oversimplified. # Methods for vertical K_{sat} #### Ex: - undisturbed cores (lab) - double ring infiltrometers (field) # **Evolution** Multi-directional movement of water through soil. Many uses: concern is how fast water moves away from application site (downward / lateral) # **ANISOTROPY** Downward Flow Is Controlled By The Most Restrictive Layer & Gravity Anisotropy fine sandy loam Alfiso 6 % slope ### **ANISOTROPY** #### **Ex.: FOSSTON SOLID WASTE AREA, MN** Kh = HORIZONTAL FLOW. Kv = VERTICAL FLOW. $Kh = 1.2 \times 10^{-3}$ $Kv = 1.5 \times 10^{-7}$ Kh/Kv = 8000 **AQUIFER** VFSL SCL AQUITARD CI FSL # **Evolution** Multi-directional movement of water through soil. # Methods: field K_{sat} - percolation test (obsolete) - bore-hole permeameters * - disc infiltrometers - etc. #### **Bore-hole Permeameters:** #### Other Methods ## **Objective:** Acquire actual (measured) K_{sat} data on major layers of benchmark and other important soils over the mid-term. (Currently ≈ 1/3 of Benchmark soils mapped in KS) ## **Why?**: - Augment Type Location information. - Incorporates / addresses real world conditions. - Provide hard data (not extrapolated estimates from cores, algorithms – none address mineralogy or structure). - Not programmatically burdensome. (limited annual impact; efficiency on site). # Results: # Seasonal Differences: Wet vs. Dry | Bavaria Soil
(fine, smectitic, mesic,
Leptic Natrustoll) | | | Saturated Hydraulic Conductivity Ksat (cm / hour) | | | |--|-------------------|--------------------|---|-----------------------------|--| | | | | Wet Season (5/6/98) | Dry Season (8/24/99) | | | Soil
Horizon | Depth (cm) | Field
Texture | X
C.V. (%)
n = 3 | X
C.V. (%)
n = 4 | | | Ap + An | 20 | silty clay
loam | 0.122 (102 %) | 4.630 (105 %) | | | Btny | 46 | silty clay | 0.075 (146 %) | 0.262 (43 %) | | | Btn | 77 | silty clay
loam | 0.060 (135 %) n = 4 | 0.108 (87 %) | | | Pratt Soil (sandy, mixed, mesic Lamellic Haplustalfs) (S05KS155-001) | | | Saturated Hydraulic Conductivity Ksat (cm / hour) | |--|-------------------|-----------------|---| | Soil
Horizon | Depth (cm) | Texture | C.V. (%)
n = 5 (unless otherwise noted) | | Ар | 18 | fine sand | 13.218 (50 %) | | Bt | 36 | loamy fine sand | 5.554 (78 %) | | E & Bt1 | 60 | sand | 9.553 (42 %) | | E & Bt2 | 100 | sand | 16.640 (34 %) | | C1 | 160 | fine sand | 18.953 (30 %) $n = 3$ | ### Heavy textured soils. | Pawnee S2006KS131-001 Nemaha Co., KS | | | Saturated Hydraulic Conductivity K _{sat} (cm/hour) | |--------------------------------------|-------------------|----------------|--| | Soil
Horizon | Depth (cm) | Lab
Texture | X
C.V. (%)
n = 5 | | Ар | 18 | silt loam | 0.092 (46 %) | | Bt3 | 63 | clay loam | 0.021 (107 %) | | Btk | 115 | clay loam | 0.008 (47 %) | | ВС | 150 | clay loam | 0.030 (82 %) | Limitations: Ex.: At / below water table Thin layers (e.g. differentially hardened layers in sandy loam till)